Preliminary

Connection Diagram

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
LE_{n}	Latch Enable Input
$\mathrm{I}_{0}-\mathrm{I}_{31}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{31}$	Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
A	O_{1}	O_{0}	$\overline{\mathrm{OE}}_{1}$	LE_{1}	I_{0}	I_{1}
B	O_{3}	O_{2}	GND	GND	I_{2}	I_{3}
C	O_{5}	O_{4}	V_{CC}	$\mathrm{V}_{\text {cc }}$	I_{4}	I_{5}
D	O_{7}	O_{6}	GND	GND	I_{6}	1_{7}
E	O_{9}	O_{8}	GND	GND	I_{8}	I_{9}
F	O_{11}	O_{10}	$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {cc }}$	I_{10}	I_{11}
G	O_{13}	O_{12}	GND	GND	I_{12}	I_{13}
H	O_{14}	O_{15}	$\overline{\mathrm{OE}}_{2}$	LE_{2}	I_{15}	I_{14}
J	O_{17}	O_{16}	$\overline{\mathrm{OE}}_{3}$	LE_{3}	l_{16}	l_{17}
K	O_{19}	O_{18}	GND	GND	I_{18}	I_{19}
L	O_{21}	O_{20}	$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {cc }}$	I_{20}	I_{21}
M	O_{23}	O_{22}	GND	GND	I_{22}	I_{23}
N	O_{25}	O_{24}	GND	GND	I_{24}	I_{25}
P	O_{27}	O_{26}	V_{CC}	$\mathrm{V}_{\text {cc }}$	I_{26}	I_{27}
R	O_{29}	O_{28}	GND	GND	I_{28}	I_{29}
T	O_{30}	O_{31}	$\overline{\mathrm{OE}}_{4}$	LE_{4}	I_{31}	I_{30}

Truth Table

Inputs			Outputs
$\mathrm{LE}_{\mathbf{n}}$	$\overline{\mathbf{O E}}_{\mathbf{n}}$	$\mathrm{I}_{\mathbf{n}}$	$\mathbf{O}_{\mathbf{n}}$
X	H	X	Z
H	L	L	L
H	L	H	H
L	L	X	$\mathrm{O}_{\mathbf{0}}$

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$\mathrm{Z}=$ High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW transition of Latch Enable

Functional Description

The LCX32373 contains thirty-two D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 32 -bit operation. The following description applies to each byte. When the Latch Enable (LE n) input is HIGH, data on the I_{n} enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time
its I input changes. When LE ${ }_{\mathrm{n}}$ is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH -to-LOW transition of $L E_{n}$. The 3-STATE standard outputs are controlled by the Output Enable $\left(\overline{\mathrm{OE}}_{\mathrm{n}}\right)$ input. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Absolute Maximum Ratings(Note 3)				
Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \end{gathered}$	Output in 3-STATE Output in HIGH or LOW State (Note 4)	V
IK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
TK	DC Output Diode Current	$\begin{aligned} & -50 \\ & +50 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}<\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \end{aligned}$	mA
T	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current per Supply Pin	± 100		mA
IGND	DC Ground Current per Ground Pin	± 100		mA
TSTG	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 5)

Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage	$\begin{array}{r} \text { Operating } \\ \text { Data Retention } \end{array}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage		0	5.5	V
V_{O}	Output Voltage	HIGH or LOW State 3-STATE	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 5.5 \end{gathered}$	V
$\overline{\mathrm{IOH}^{\prime} / \mathrm{l}_{\mathrm{OL}}}$	Output Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}-2.7 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 24 \\ \pm 12 \\ \pm 8 \end{gathered}$	mA
T_{A}	Free-Air Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0	10	ns / V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recom mended Operating Conditions" table will define the conditions for actual device operation.
Note 4: I_{0} Absolute Maximum Rating must be observed.
Note 5: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage		2.3-2.7	1.7		V
			2.7-3.6	2.0		
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage		2.3-2.7		0.7	V
			2.7-3.6		0.8	
$\overline{\mathrm{V} \text { OH}}$	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{IOH}^{\text {O }}=8 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{IOH}^{\prime}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
$\overline{\mathrm{V} \text { OL }}$	LOW Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-3.6		0.2	v
		$\mathrm{IOL}^{\text {a }}$ 8 mA	2.3		0.6	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{loL}=16 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
loz	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3-3.6		± 5.0	$\mu \mathrm{A}$
Ioff	Power-Off Leakage Current	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0		10	$\mu \mathrm{A}$

Preliminary

DC Electrical Characteristics (Continued)						
Symbol	Parameter	Conditions	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.3-3.6		20	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ (Note 6)	2.3-3.6		± 20	
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.3-3.6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \hline \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	5.4	1.5	5.9	1.5	6.5	
tpLH	I_{n} to O_{n}	1.5	5.4	1.5	5.9	1.5	6.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	1.5	5.5	1.5	6.4	1.5	6.6	
$\mathrm{t}_{\text {PLH }}$	LE to O_{n}	1.5	5.5	1.5	6.4	1.5	6.6	ns
tpzL	Output Enable Time	1.5	6.1	1.5	6.5	1.5	7.9	ns
tPZH		1.5	6.1	1.5	6.5	1.5	7.9	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	6.0	1.5	6.3	1.5	7.2	
tPHz		1.5	6.0	1.5	6.3	1.5	7.2	ns
$\mathrm{t}_{\text {S }}$	Setup Time, I_{n} to LE	2.5		2.5		3.0		ns
${ }_{\text {t }}$	Hold Time, I_{n} to LE	1.5		1.5		2.0		ns
${ }^{\text {t }}$ W	LE Pulse Width	3.0		3.0		3.5		ns

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Units
			(V)	Typical	
$\overline{\mathrm{V}} \mathrm{OLP}$	Quiet Output Dynamic Peak V ${ }_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\overline{\mathrm{V}} \mathrm{OLV}$	Quiet Output Dynamic Valley V ${ }_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$	V
Capacitance					
Symbol	Parameter	Conditions		Typical	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {CC }}=$ Open, $\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$		7	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}$ or V_{Cc}		8	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$		20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C_{L} includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$, and 2.7 V $\mathrm{~V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $\mathrm{t}_{\text {rec }}$ Waveforms

3-STATE Output Low Enable and Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $\mathrm{f}=\mathbf{1 M H z}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{3 n s}$)

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA96ArevE
96-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Package Number BGA96A
Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
